高精度运算 高精度加法: int main() { scanf("%s%s",&a1,&b1); if(a1[0] == '0' && b1[0] == '0') { cout << "0"; return 0; } for(int i = 0;i < strlen(a1);++i) a[strlen(a1) - i - 1] = a1[i] - '0'; for(i…
高精度运算 高精度加法: int main() { scanf("%s%s",&a1,&b1); if(a1[0] == '0' && b1[0] == '0') { cout << "0"; return 0; } for(int i = 0;i < strlen(a1);++i) a[strlen(a1) - i - 1] = a1[i] - '0'; for(i…
洛谷:P3386 题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 输出格式: 共一行,二分图最大匹配 输入输出样例 输入样例#1: 1 1 1 1 1 输出样例#1: 1 邻接矩阵(老码风) #include <cstdio> #include <iostream> #include <algorithm> #include &…
洛谷:P3366 ,和Dijkstra堆优化模板差不多 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N、M,表示该图共有N个结点和M条无向边。(N<=5000,M<=200000) 接下来M行每行包含三个整数Xi、Yi、Zi,表示有一条长度为Zi的无向边连接结点Xi、Yi 输出格式: 输出包含一个数,即最小生成树的各边的长度之和;如果该图不连通则输出orz 输入输出样例 输入样例#1: 4 5 1 2 2 1 3 2 1 4 …
笔记 1、出度:以顶点v为起点的弧的数目 入度:顶点v为终点的弧的数目 2、如果在有向图G中,有一条<u,v>有向道路,则v称为u可达的,或者说,从u可达v。 3、强连通图:若有向图G的任意两个顶点都互相可达,则称图 G是强连通图,如果有向图G存在两顶点u和v使得u不能到v,或者v不能到u,则称图G是强非连通图。 4、强连通分量:如果有向图G不是强连通图,他的子图G2是强连通图,点v属于G2,任意包含v的强连通子图也是G2的子图,则称G2是有向图G的极大强连通子图,也称强连通分量。 5、极大强连通子图(…
题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。 输入输出格式 输入格式: 第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。 接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为2147483647) 输入输出样例 输入样例#1: 4 6 1 1 2 2 2 3 2 …
性质 并查集算法(union_find sets)支持分割一个集合,求连通子图、求最小生成树(克鲁斯卡尔) 输入输出格式 输入格式: 第一行包含两个整数N、M,表示共有N个元素和M个操作。 接下来M行,每行包含三个整数Zi、Xi、Yi 当Zi=1时,将Xi与Yi所在的集合合并 当Zi=2时,输出Xi与Yi是否在同一集合内,是的话输出Y;否则话输出N 输出格式: 如上,对于每一个Zi=2的操作,都有一行输出,每行包含一个大写字母,为Y或者N 输入输出样例 输入样例#1: 4 7 2 1 2 1 1 2 2 1 2 1…
神楽坂 みずき
萌萌萌,好萌!