高精度运算 高精度加法: int main() { scanf("%s%s",&a1,&b1); if(a1[0] == '0' && b1[0] == '0') { cout << "0"; return 0; } for(int i = 0;i < strlen(a1);++i) a[strlen(a1) - i - 1] = a1[i] - '0'; for(i…
高精度运算 高精度加法: int main() { scanf("%s%s",&a1,&b1); if(a1[0] == '0' && b1[0] == '0') { cout << "0"; return 0; } for(int i = 0;i < strlen(a1);++i) a[strlen(a1) - i - 1] = a1[i] - '0'; for(i…
洛谷:P3366 ,和Dijkstra堆优化模板差不多 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N、M,表示该图共有N个结点和M条无向边。(N<=5000,M<=200000) 接下来M行每行包含三个整数Xi、Yi、Zi,表示有一条长度为Zi的无向边连接结点Xi、Yi 输出格式: 输出包含一个数,即最小生成树的各边的长度之和;如果该图不连通则输出orz 输入输出样例 输入样例#1: 4 5 1 2 2 1 3 2 1 4 …
简介 Dijkstra算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 无优化复杂度:O(n ^ 2) 那么有O(km)的Spfa算法我们为什么需要Dijkstra算法呢? 因为某些毒瘤出题人会专门设计网格图来卡Spfa算法,使其变为O(m ^ 2)如下方提到的落谷题目。 洛谷:P3371(弱化版) Spfa能过 P4779(标准版)卡S…
神楽坂 みずき
萌萌萌,好萌!